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Locally Adaptive Smoothing with Markov
Random Fields and Shrinkage Priors

James R. Faulkner∗,† and Vladimir N. Minin‡

Abstract. We present a locally adaptive nonparametric curve fitting method that
operates within a fully Bayesian framework. This method uses shrinkage priors
to induce sparsity in order-k differences in the latent trend function, providing
a combination of local adaptation and global control. Using a scale mixture of
normals representation of shrinkage priors, we make explicit connections between
our method and kth order Gaussian Markov random field smoothing. We call
the resulting processes shrinkage prior Markov random fields (SPMRFs). We use
Hamiltonian Monte Carlo to approximate the posterior distribution of model pa-
rameters because this method provides superior performance in the presence of
the high dimensionality and strong parameter correlations exhibited by our mod-
els. We compare the performance of three prior formulations using simulated data
and find the horseshoe prior provides the best compromise between bias and preci-
sion. We apply SPMRF models to two benchmark data examples frequently used
to test nonparametric methods. We find that this method is flexible enough to
accommodate a variety of data generating models and offers the adaptive proper-
ties and computational tractability to make it a useful addition to the Bayesian
nonparametric toolbox.

Keywords: nonparametric, horseshoe prior, Lévy process, Hamiltonian Monte
Carlo.

1 Introduction

Nonparametric curve fitting methods find extensive use in many aspects of statistical
modeling such as nonparametric regression, spatial statistics, and survival models, to
name a few. Although these methods form a mature area of statistics, many computa-
tional and statistical challenges remain when such curve fitting needs to be incorporated
into multi-level Bayesian models with complex data generating processes. This work is
motivated by the need for a curve fitting method that could adapt to local changes
in smoothness of a function, including abrupt changes or jumps, and would not be re-
stricted by the nature of observations and/or their associated likelihood. Our desired
method should offer measures of uncertainty for use in inference, should be relatively
simple to implement and computationally efficient. There are many methods available
for nonparametric curve fitting, but few which meet all of these criteria.
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Gaussian process (GP) regression (Neal, 1998; Rasmussen and Williams, 2006) is a
popular Bayesian nonparametric approach for functional estimation that places a GP
prior on the function of interest. The covariance function must be specified for the
GP prior, and the isotropic covariance functions typically used are not locally adaptive.
Nonstationary covariance functions have been investigated to make GP regression locally
adaptive (Brahim-Belhouari and Bermak, 2004; Paciorek and Schervish, 2004, 2006).
Any finite dimensional representation of GPs involves manipulations of, typically high
dimensional, Gaussian vectors with mean vector and covariance matrix induced by the
GP. Many GPs, including the ones with nonstationary covariance functions, suffer from
high computational cost imposed by manipulations (e.g., Cholesky factorization) of the
dense covariance matrix in the finite dimensional representation.

Sparsity can be imposed in the precision matrix (inverse covariance matrix) by con-
straining a finite dimensional representation of a GP to be a Gaussian Markov random
field (GMRF), and then computational methods for sparse matrices can be employed
to speed computations (Rue, 2001; Rue and Held, 2005). Fitting smooth functions with
GMRFs has been practiced widely. These methods use difference equations as approx-
imations to continuous function derivatives to induce smoothing, and have a direct
relationship to smoothing splines (Speckman and Sun, 2003). GMRFs have also been
used to develop Bayesian adaptive smoothing splines (Lang et al., 2002; Yue et al., 2012,
2014). A similar approach is the nested GP (Zhu and Dunson, 2013), which puts a GP
prior on the order-k function derivative, which is in turn centered on another GP. This
approach has good adaptive properties but has not been developed for non-Gaussian
data.

Differencing has commonly been used as an approach to smoothing and trend es-
timation in time series analysis, signal processing, and spatial statistics. Its origins go
back at least to Whittaker (1922), who suggested a need for a trade off between fidelity
to the data and smoothness of the estimated function. This idea is the basis of some fre-
quentist curve-fitting methods based on penalized least squares, such as the smoothing
spline (Reinsch, 1967; Wahba, 1975) and the trend filter (Kim et al., 2009; Tibshirani,
2014). These penalized least-squares methods are closely related to regularization meth-
ods for high-dimensional regression such as ridge regression (Hoerl and Kennard, 1970)
and the lasso (Tibshirani, 1996) due to the form of the penalties imposed.

Bayesian versions of methods like the lasso (Park and Casella, 2008) utilize shrinkage
priors in place of penalties. Therefore, it is interesting to investigate how these shrinkage
priors (Polson and Scott, 2010; Griffin et al., 2013; Bhattacharya et al., 2015) perform
when applied to differencing-based time series smoothing. Although shrinkage priors
have been used explicitly in the Bayesian nonparametric regression setting for regu-
larization of wavelet coefficients (Abramovich et al., 1998; Johnstone and Silverman,
2005; Reményi and Vidakovic, 2015) and for shrinkage of order-k differences of basis
spline coefficients in adaptive Bayesian P-splines (Scheipl and Kneib, 2009), a Bayesian
version of the trend filter and Markov random field (MRF) smoothing with shrinkage
priors has not been thoroughly investigated. To our knowledge, only Roualdes (2015),
independently from our work, looked at Laplace prior-based Bayesian version of the
trend filter in the context of a normal response model. In this paper, we conduct a thor-
ough investigation of smoothing with shrinkage priors applied to MRFs for Gaussian
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and non-Gaussian data. We call the resulting models shrinkage prior Markov random
fields (SPMRFs).

We borrow the idea of shrinkage priors from the sparse regression setting and apply
it to the problem of function estimation. We take the perspective that nonparametric
curve fitting is essentially a regularization problem where estimation of an unknown
function can be achieved by inducing sparsity in its order-k derivatives. We propose
a few fully Bayesian variations of the trend filter (Kim et al., 2009; Tibshirani, 2014)
which utilize shrinkage priors on the kth-order differences in values of the unknown tar-
get function. The shrinkage imposed by the priors induces a locally adaptive smoothing
of the trend. The fully Bayesian implementation allows representation of parameter
uncertainty through posterior distributions and eliminates the need to specify a single
global smoothing parameter by placing a prior distribution on the smoothing parameter,
although complete automation is not possible so we offer ways to parameterize the global
smoothing prior. In Section 2 we provide a derivation of the models starting from pe-
nalized frequentist methods and we show the relationship to GMRF models. In Section
2 we also describe our method of sampling from the posterior distribution of the param-
eters using Hamiltonian Monte Carlo (HMC), which is efficient and straight forward to
implement. In Section 3 we use simulations to investigate performance properties of the
SPMRF models under two different prior formulations and we compare results to those
for a GMRF with constant precision. We show that the choice of shrinkage prior will
affect the smoothness and local adaptive properties. In Section 4 we apply the method
to two example data sets which are well known in the nonparametric regression setting.

2 Methods

2.1 Preliminaries

We start by reviewing a locally adaptive penalized least squares approach to nonpara-
metric regression known as the trend filter (Kim et al., 2009; Tibshirani and Taylor,
2011; Tibshirani, 2014) and use that as a basis to motivate a general Bayesian approach
that utilizes shrinkage priors in place of roughness penalties. We first consider the stan-
dard nonparametric regression problem to estimate the unknown function f . We let θ
represent a vector of values of f on a discrete uniform grid t ∈ {1, 2, . . . , n}, and we
assume y = θ + ε, where ε∼N(0, Iσ2), and y and ε are vectors of length n. Here all
vectors are column vectors. Following Tibshirani (2014) with slight modification, the
least squares estimator of the kth order trend filtering estimate θ̂ is

θ̂ = argmin
θ

‖y− θ‖22 + λ‖D(k)θ‖1 , (1)

where ‖ · ‖q represents the Lq vector norm, and D(k) is an (n−k)×n forward difference

operator matrix of order k, such that the ith element of the vector Δkθ = D(k)θ is
the forward difference Δkθi = (−1)k

∑k
j=0(−1)j

(
k
j

)
θi+j . Note that D(k) has recursive

properties such that D(k)
n = D

(1)
n−k+1D

(k−1)
n , where D(h)

m has dimensions (m − h) ×m.
The objective function in (1) balances the trade-off between minimizing the squared
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deviations from the data (the first term in the sum on the right) with minimizing the
discretized roughness penalty of the function f (the second term in the sum on the
right). The smoothing parameter λ ≥ 0 controls the relative influence of the roughness
penalty. Setting λ to 0 we get least squares estimation. As λ gets large, the roughness
penalty dominates, resulting in a function with k -th order differences approaching 0 for
all t. The trend filter produces a piecewise polynomial function of t1, . . . , tn with degree
k − 1 as an estimator of the unknown function f . Increasing the order of the difference
operator will enforce a smoother function.

The L1 penalty in (1) results in the trend filter having locally adaptive smoothing
properties. Tibshirani (2014) shows that the trend filter is very similar in form and
performance to smoothing splines and locally adaptive regression splines, but the trend
filter has a finer level of local adaptivity than smoothing splines. A main difference be-
tween the trend filter and smoothing splines is that the latter uses a squared L2 penalty,
which is the same penalty used in ridge regression (Hoerl and Kennard, 1970). Note that
the L1 penalty used by the trend filter is also used by the lasso regression (Tibshirani,
1996), and the trend filter is a form of generalized lasso (Tibshirani and Taylor, 2011;
Tibshirani, 2014). In the linear regression setting with regression coefficients βjs, the L1

and L2 penalties can be represented by the generalized ridge penalty λ
∑

j |βj |q (Frank
and Friedman, 1993), where q = 2 corresponds to the ridge regression penalty, q = 1
to the lasso penalty, and sending q to zero results in all subsets selection regression
(Tibshirani, 2011). Based on what we know about lasso regression, subset selection re-
gression, and ridge regression, we expect a penalty closer to subset selection to do better
for fitting functions with a small number of large jumps, a trend filter penalty (L1) to
do better for fitting functions with small to moderate deviations from polynomials of
degree k − 1, and a smoothing spline (squared L2) penalty to do better for smooth
polynomial-like functions with no jumps. This distinction will become important later
when we assess the performance of different Bayesian formulations of the trend filter.

One can translate the penalized least squares formulation in (1) into either a pe-
nalized likelihood formulation or a Bayesian formulation. Penalized least squares can
be interpreted as minimizing the penalized negative log-likelihood −lp(θ | y) = −l(θ |
y)+p(θ | λ), where l(θ | y) is the unpenalized log-likelihood and p(θ | λ) is the penalty.
It follows that maximization of the penalized log-likelihood is directly comparable to
finding the mode of the log-posterior in the Bayesian formulation, where the penalty
is represented as a prior. This implies independent Laplace (double-exponential) pri-
ors on the Δkθj , where j = 1, . . . , n − k, for the trend filter formulation in (1). That
is, p(Δkθj | λ) = λ

2 exp(−λ |Δkθj |). This is a well-known result that has been used
in deriving a Bayesian form of the lasso (Tibshirani, 1996; Figueiredo, 2003; Park and
Casella, 2008). Note that putting independent priors on the kth-order differences results
in improper joint prior p(θ | λ), which can be made proper by including a proper prior
on the first k θs.

The Laplace prior falls into a class of priors commonly known as shrinkage priors. An
effective shrinkage prior has the ability to shrink noise to zero yet retain and accurately
estimate signals (Polson and Scott, 2010). These properties translate into a prior density
function that has a combination of high mass near zero and heavy tails. The high density
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near zero acts to shrink small values close to zero, while the heavy tails allow large signals
to be maintained. A simple prior developed for subset selection in Bayesian setting is the
spike-and-slab prior, which is a mixture distribution between a point mass at zero and
a continuous distribution (Mitchell and Beauchamp, 1988). This prior works well for
model selection, but some drawbacks are that it forces small signals to be exactly zero,
and computational issues can make it difficult to use (Polson and Scott, 2010). There
has been much interest in developing priors with continuous distributions (one group)
that retain variable selection properties of the spike-and-slab (two-group) yet do so by
introducing sparsity through shrinkage (Polson and Scott, 2010). This approach allows
all of the coefficients to be nonzero, but most are small and only some are large. Many
such shrinkage priors have been proposed, including the normal-gamma (Griffin et al.,
2010), generalized double-Pareto (Armagan et al., 2013), horseshoe (Carvalho et al.,
2010), horseshoe+ (Bhadra et al., 2015), and Dirichlet–Laplace (Bhattacharya et al.,
2015). The Laplace prior lies somewhere between the normal prior and the spike-and-
slab in its shrinkage abilities, yet most shrinkage priors of current research interest have
sparsity inducing properties closer to those of the spike-and-slab. Our main interest is in
comparing the Laplace prior to other shrinkage priors in the context of nonparametric
smoothing.

2.2 Model Formulation

It is clear that shrinkage priors other than the lasso could represent different smoothing
penalties and therefore could lead to more desirable smoothing properties. There is
a large and growing number of shrinkage priors in the literature. It is not our goal
to compare and characterize properties of Bayesian nonparametric function estimation
under all of these priors. Instead, we wish to investigate a few well known shrinkage
priors and demonstrate as proof of concept that adaptive functional estimation can be
achieved with shrinkage priors. Further research can focus on improvements to these
methods. What follows is a general description of our modeling approach and the specific
prior formulations that will be investigated through the remainder of the paper.

We assume the n observations yi, where i = 1, . . . , n, are independent and follow
some distribution dependent on the unknown function values θi and possibly other
parameters ξ at discrete points t. We further assume that the order-k forward differences
in the function parameters, Δkθj , where j = 1, . . . , n−k, are independent and identically
distributed conditional on a global scale parameter which is a function of the smoothing
parameter λ. These assumptions result in the following general hierarchical form:

yi | θi, ξ ∼ p(yi | θi, ξ), Δkθj | λ ∼ p(Δkθj | λ), λ ∼ p(λ), ξ ∼ p(ξ). (2)

One convenient trait of many shrinkage priors, including the Laplace, the logistic,
and the t-distribution, is that they can be represented as scale mixtures of normal
distributions (Andrews and Mallows, 1974; West, 1987; Polson and Scott, 2010). The
conditional form of scale mixture densities leads naturally to hierarchical representa-
tions. This can allow some otherwise intractable density functions to be represented
hierarchically with standard distributions and can ease computation. To take advan-
tage of this hierarchical structure, we restrict densities p(Δkθj | λ) to be scale mixtures
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of normals, which allows us to induce a hierarchical form to our model formulation by
introducing latent local scale parameters, τj . Here the order-k differences in the function
parameters, Δkθj , are conditionally normally distributed with mean zero and variance
τ2j , and the τj are independent and identically distributed with a global scale parameter

which is a function of the smoothing parameter λ. The distribution statement for Δkθj
in (2) can then be replaced with the following hierarchical representation:

Δkθj | τj ∼ N(0, τ2j ), τj | λ ∼ p(τj | λ). (3)

To complete the model specification, we place proper priors on θ1, . . . , θk. This main-
tains propriety and can improve computational performance for some Markov chain
Monte Carlo (MCMC) samplers. We start by setting θ1 ∼ N(μ, ω2), where μ and ω
can be constants or allowed to follow their own distributions. Then for k ≥ 2 and
h = 1, . . . , k−1, we let Δhθ1 |αh ∼ N(0, α2

h) and αh |λ ∼ p(αh |λ), where p(α |λ) is the
same form as p(τ |λ). That is, we assume the order-h differences are independent with
scale parameters that follow the same distribution as the order-k differences. For most
situations, the order of k will be less than 4, so issues of scale introduced by assuming
the same distribution on the scale parameters for the lower and higher order differences
will be minimal. One could alternatively adjust the scale parameter of each p(αh |λ) to
impose smaller variance for lower order differences.

For the remainder of the paper we investigate two specific forms of shrinkage priors:
the Laplace and the horseshoe. We later compare the performance of these two priors
to the case where the order-k differences follow identical normal distributions. The
following provides specific descriptions of our shrinkage prior formulations.

Laplace. As we showed previously, this prior arises naturally from an L1 penalty,
making it the default prior for Bayesian versions of the lasso (Park and Casella, 2008)
and trend filter. The Laplace distribution is leptokurtic and features high mass near
zero and exponential tails (Figure 1). Various authors have investigated its shrinkage
properties (Griffin et al., 2010; Kyung et al., 2010; Armagan et al., 2013). We allow
the order-k differences Δkθj to follow a Laplace distribution conditional on a global
scale parameter γ = 1/λ, and we allow γ to follow a half-Cauchy distribution with scale
parameter ζ. That is,

Δkθj | γ ∼ Laplace(γ), γ ∼ C+(0, ζ). (4)

The use of a half-Cauchy prior on γ is a departure from Park and Casella (2008), who
make λ2 follow a gamma distribution to induce conjugacy in the Bayesian lasso. We
chose to use the half-Cauchy prior on γ because its single parameter simplifies imple-
mentation, it has desirable properties as a prior on a scale parameter (Gelman et al.,
2006; Polson and Scott, 2012b), and it allowed us to be consistent across methods (see
horseshoe specification below). The hierarchical form of the Laplace prior arises when
the mixing distribution on the square of the local scale parameter τj is an exponential
distribution. Specifically, we specify τ2j | λ ∼ Exp(λ2/2) and Δkθj | τj ∼ N(0, τ2j ) in the
hierarchical representation.

Horseshoe. The horseshoe prior (Carvalho et al., 2010) has an infinite spike in density
at zero but also exhibits heavy tails (Figure 1). This combination results in excellent
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Figure 1: Shapes of prior distributions (left) and associated tail behavior (right) for
priors used for p(Δkθ |λ).

performance as a shrinkage prior (Polson and Scott, 2010), and gives the horseshoe
shrinkage properties more similar to the spike-and-slab variable selection prior than
those of the Laplace prior. We allow the order-k differences Δkθj to follow a horseshoe
distribution conditional on global scale parameter γ = 1/λ, and allow γ to follow a
half-Cauchy distribution with scale parameter ζ. That is,

Δkθj | γ ∼ HS(γ), γ ∼ C+(0, ζ). (5)

The horseshoe density function does not exist in closed form, but we have derived an
approximate closed-form solution using the known function bounds (see Supplementary
Materials (Faulkner and Minin, 2017)), which could be useful for application in some
settings. Carvalho et al. (2010) represent the horseshoe density hierarchically as a scale
mixture of normals where the local scale parameters τj are distributed half-Cauchy.
In our hierarchical version, the latent scale parameter τj | γ ∼ C+(0, γ) and then
conditional on τj the distribution on the order-k differences is Δkθj | τj ∼ N(0, τ2j ).

The horseshoe prior arises when the mixing distribution on the local scale param-
eter τj is half-Cauchy, which is a special case of a half-t-distribution where degrees of
freedom (df ) equal 1. Setting df > 1 would result in a prior with lighter tails than
the horseshoe, and setting 0 < df < 1 would result in heavier tails. We tested half-t
formulations with df between 1 and 5 in test scenarios, but did not find an apprecia-
ble difference in performance relative to the horseshoe. We also attempted to place a
prior distribution on the df parameter, but found the data to be insufficient to gain
information in the posterior for df in our test scenarios, so we did not pursue this
further.

Normal. The normal distribution arises as a prior on the order-k differences when the
penalty in the penalized likelihood formulation is a squared L2 penalty. The normal prior
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is also the form of prior used in Bayesian smoothing splines. The normal is not considered
a shrinkage prior and does not have the flexibility to allow locally adaptive smoothing
behavior. We use it for comparison to demonstrate the local adaptivity allowed by the
shrinkage priors. For our investigations, the distribution on the order-k differences and
associated scale parameter is:

Δkθj | γ ∼ N(0, γ2), γ ∼ C+(0, ζ). (6)

2.3 Connections to Markov Random Fields

Here we briefly show the models represented by (2) can be expressed with GMRF
priors for θ conditional on the local scale parameters τ . It is instructive to start with
the normal increments model (6), which belongs to a class of time series models known
as autoregressive models of order k. Rue and Held (2005) call this model a k-th order
random walk and show that it is a GMRF with respect to a k-th order chain graph —
a graph with nodes {1, 2, . . . , n}, where the nodes i �= j are connected by an edge if and
only if |i−j| ≤ k. Since the normal model (6) does not fully specify the joint distribution
of θ, it is an intrinsic (improper) GMRF. We make it a proper GMRF by specifying a
prior density of the first k components of θ, p(θ1, . . . , θk). The Markov property of the
model manifests itself in the following factorization:

p(θ) = p(θ1, . . . , θk)p(θk+1 | θ1, . . . , θk) · · · p(θn | θn−1, . . . , θn−k).

Equipped with initial distribution p(θ1, . . . , θk), models (5) and (4) also admit this
factorization, so they are k-th order Markov, albeit not Gaussian models. However, if
we condition on the latent scale parameters τ , both the Laplace and horseshoe models
become GMRFs, or more specifically k-th order normal random walks. One important
feature of these random walks is that each step in the walk has its own precision. To
recap, under prior specifications (5) and (4) p(θ | γ) is a non-Gaussian Markov field,
while p(θ | τ , γ) = p(θ | τ ) is a GMRF.

Our GMRF point of view is useful in at least three respects. First, GMRFs with
constant precision have been used for nonparametric smoothing in many settings (see
Rue and Held (2005) for examples). GMRFs with nonconstant precision have been used
much less frequently, but one important application is to the development of adaptive
smoothing splines by allowing order-k increments to have nonconstant variances (Lang
et al., 2002; Yue et al., 2012). The approach of these authors is very similar to our own
but differs in at least two important ways. First, we specify the prior distribution on the
latent local scale parameters τj with the resulting marginal distribution of Δkθj in mind,
such as the Laplace or horseshoe distributions which arise as scale mixtures of normals.
This allows a better understanding of the adaptive properties of the resulting marginal
prior in advance of implementation. In contrast, Lang et al. (2002) and Yue et al.
(2012) appear to choose the distribution on local scale parameters based on conjugacy
and do not consider the effect on the marginal distribution of Δkθj . Second, we allow
the local scale parameters τj to be independent, whereas Lang et al. (2002) and Yue
et al. (2012) impose dependence among the scale (precision) parameters by forcing them
to follow another GMRF. Allowing the local scale parameters to be independent allows
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the model to be more flexible and able to adapt to jumps and sharp local features.
We should also note that Rue and Held (2005) in Section 4.3 show that the idea of
scale mixtures of normal distributions can be used with GMRFs to generate order-k
differences which marginally follow a t-distribution by introducing latent local scale
parameters. Although they do not pursue this further, we mention it because it bears
similarity to our approach.

Second, viewing the SPMRF models as conditional GMRFs allows us to utilize some
of the theoretical results and computational methods developed for GMRFs. In particu-
lar, one can take advantage of more complex forms of precision matrices such as circulant
or seasonal trend matrices (see Rue and Held (2005) for examples). One can also employ
the computational methods developed for sparse matrices, which speed computation
times (Rue, 2001; Rue and Held, 2005). We note that simple model formulations such
as the kth-order random walk models can be coded with state-space formulations based
on forward differences, which speed computation times by eliminating the operations
on covariance matrices necessary with multivariate Gaussian formulations.

A third advantage of connecting our models to GMRFs is that the GMRF repre-
sentation allows us to connect our first-order Markov models to subordinated Brownian
motion (Bochner, 1955; Clark, 1973), a type of Lévy process recently studied in the
context of scale mixture of normal distributions (Polson and Scott, 2012a). Polson and
Scott (2012a) use the theory of Lévy processes to develop shrinkage priors and penalty
functions. Let us briefly consider a simple example of subordinated Brownian motion.
LetW be a Weiner process, so thatW (t+s)−W (t) ∼ N(0, sσ2), andW has independent
increments. Let T be a subordinator, which is a Lévy process that is non-decreasing with
probability 1, has independent increments, and is independent of W . The subordinated
process Z results from observing W at locations T (t). That is, Z(t) = W [T (t)]. The
subordinator essentially generates a random set of irregular locations over which the
Brownian motion is observed, which results in a new process. In our hierarchical repre-
sentation of Laplace and horseshoe priors for the first order differences, we can define a
subordinator process Tj =

∑j
i=1 τ

2
i , so that the GMRF p(θ | τ ) can be thought of as a

subordinated Brownian motion or as a realization of a Brownian motion with unit vari-
ance on the random latent irregular grid T1, . . . , Tn. The subordinated Brownian motion
interpretation is not so straight forward when applied to higher-order increments, but
we think this interpretation will be fruitful for extending our SPMRF models in the
future. One example where this interpretation is useful is when observations occur on
an irregularly spaced grid, which we explore in the following section.

2.4 Extension to Irregular Grids

So far we have restricted our model formulation to the case where data are observed
at equally-spaced locations. Here we generalize the model formulation to allow for data
observed at locations with irregular spacing. This situation arises with continuous mea-
surements over time, space, or some covariate, or when gaps are left by missing obser-
vations.

For a GMRF with constant precision (normally distributed kth-order differences),
we can use integrated Wiener processes to obtain the precision matrix (see Rue and
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Held (2005) and Lindgren and Rue (2008) for details). However, properly accounting
for irregular spacing in our models with Laplace or horseshoe kth-order differences is
more difficult. To use tools similar to those for integrated Wiener processes we would
need to show that the processes built on Laplace and horseshoe increments maintain
their distributional properties over any subinterval of a continuous measure. Polson
and Scott (2012a) show that processes with Laplace or horseshoe first-order increments
can be represented as subordinated Brownian motion. However, to meet the necessary
condition of an infinitely divisible subordinator, the subordinator for the Laplace process
needs to be on the precision scale and the subordinator for the horseshoe process needs
to be on the log-variance scale. Both resulting processes are Lévy process, which means
they have independent and stationary increments, but the increments are no longer over
the continuous measure of interest. This makes representation of these processes over
continuous time difficult and development of the necessary theory is out of the scope of
this paper.

Absent theory to properly address this problem, we instead start with our hierarchi-
cal model formulations and assume that conditional on a set of local variance parameters
τ , we can use methods based on integrated Wiener processes to obtain the precision
matrices for the latent GMRFs. This requires the assumption that local variances are
constant within respective intervals between observations. Let s1 < s2 < . . . < sn be a
set of locations of observations, and let δj = sj+1− sj be the distance between adjacent
locations. We assume we have a discretely observed continuous process and denote by
θ(sj) the value of the process at location sj . For the first-order model and some interval
[sj , sj+1], we assume that conditional on local variance τj , θ(s) follows a Wiener process
where θ(sj+h)−θ(sj) | τj ∼ N(0, hτ2j ) for all 0 ≤ h ≤ δj . If we let Δθj = θ(sj+1)−θ(sj),
the resulting variance of Δθj is

Var(Δθj) = δjτ
2
j .

Note that the resulting marginal distribution of θ(sj+h)−θ(sj) after integrating over τj
is therefore assumed to be Laplace or horseshoe for all h, with the form of the marginal
distribution dependent on the distribution of τj . We know this cannot be true in general
given the properties of these distributions, but we assume it approximately holds for
h ≤ δ.

The situation becomes more complex for higher order models. We restrict our inves-
tigations to the second-order model and follow the methods of Lindgren and Rue (2008),
who use a Galerkin approximation to the stochastic differential equation representing
the continuous process. The resulting formula for a second-order increment becomes

Δ2θj = θ(sj+2)−
(
1 +

δj+1

δj

)
θ(sj+1) +

δj+1

δj
θ(sj),

and the variance of a second-order increment conditional on τj is

Var(Δ2θj) =
δ2j+1(δj + δj+1)

2
τ2j .

This adjustment of the variance results in good consistency properties for GMRFs with
constant precision (Lindgren and Rue, 2008), so should also perform well over intervals
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with locally constant precision. We show in the Supplementary Materials (Faulkner and
Minin, 2017) that integrating over the local scale parameter τj maintains the distance
correction as a multiplicative factor on the scale of the resulting marginal distribution.
We also provide a data example involving a continuous covariate in the Supplementary
Materials (Faulkner and Minin, 2017) where we apply the methods above for irregular
grids.

2.5 Posterior Computation

Since we have two general model formulations, marginal and hierarchical, we could
use MCMC to approximate the posterior distribution of heights of our piecewise step
functions, θ, by working with either one of the two corresponding posterior distributions.
The first one corresponds to the marginal model formulation:

p(θ, γ, ξ | y) ∝
n∏

i=1

p(yi | θi, ξ)p(θ | γ)p(ξ)p(γ), (7)

where p(θ | γ) is a Markov field induced by the normal, Laplace, or horseshoe densities,
and p(γ) is a half-Cauchy density. Note that a closed-form approximation to the density
function for the horseshoe prior (see Supplementary Materials (Faulkner and Minin,
2017)) is needed for the marginal formulation using the horseshoe. The second posterior
corresponds to the hierarchical model with latent scale parameters τ :

p(θ, τ , γ, ξ | y) ∝
n∏

i=1

p(yi | θi, ξ)p(θ | τ )
n−k∏
j=1

p(τj | γ)p(ξ)p(γ), (8)

where p(θ | τ ) is a GMRF and the choice of p(τj | γ) makes the marginal prior specifica-
tion for θ correspond either to a Laplace or to a horseshoe Markov random field. Notice
that the unconditional GMRF (normal prior) has only the marginal specification.

Both of the above model classes are highly parameterized with dependencies among
parameters induced by differencing and the model hierarchy. It is well known that
high-dimensional, hierarchical models with strong correlations among parameters can
create challenges for standard MCMC samplers, such as component-wise random walk
Metropolis or Gibbs updates. When faced with these challenges, random walk behavior
can result in inefficient exploration of the parameter space, which can lead to poor
mixing and prohibitively long convergence times. Many approaches have been proposed
to deal with these issues, including block updating (Knorr-Held and Rue, 2002), elliptical
slice sampling (Murray et al., 2010; Murray and Adams, 2010), the Metropolis adjusted
Langevin algorithm (MALA) (Roberts and Stramer, 2002), and Hamiltonian Monte
Carlo (HMC) (Duane et al., 1987; Neal, 1993, 2011). All of these approaches jointly
update some or all of the parameters at each MCMC iteration, which usually improves
mixing and speeds up convergence of MCMC. Among these methods, HMC offered the
most practical choice due to its ability to handle a wide variety of models and its relative
ease in implementation via readily available software such as stan (Carpenter et al.,
2016). We used a modification of HMC proposed by Hoffman and Gelman (2014) which
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automatically adjusts HMC tuning parameters. We used the open source package rstan
(Stan Development Team, 2015a), which provides a platform for fitting models using
HMC in the R computing environment (R Core Team, 2014).

Even with HMC, slow mixing can still arise with hierarchical models and heavy-tailed
distributions due to the inability of a single set of HMC tuning parameter values to be
effective across the entire model parameter space. Fortunately this problem can often
be remedied by model reparameterizations that change the geometry of the sampled pa-
rameter space. For hierarchical models, the non-centered parameterization methods de-
scribed by Papaspiliopoulos et al. (2003, 2007) and Betancourt and Girolami (2015) can
be useful. Non-centered parameterizations break the dependencies among parameters
by introducing deterministic transformations of the parameters. The MCMC algorithm
then operates directly on the independent parameters. Betancourt and Girolami (2015)
discuss non-centered parameterizations in the context of HMC, and further examples of
these and other reparameterization methods that target heavy-tailed distributions are
provided in the documentation for stan (Stan Development Team, 2015b).

We note that after employing reparameterizations, HMC with stationary distribu-
tion equal to the hierarchical model posterior (8) had good convergence and mixing
properties for each of our models and in nearly all of our numerical experiments. HMC
that targeted the marginal model posterior (7) had fast run times and good mixing
for the normal and Laplace formulations, but we could not effectively reparameterize
the (approximate) marginal horseshoe distribution to remove the effects of its heavy
tails, which resulted in severe mixing problems for the marginal horseshoe-based model.
Therefore, in the rest of the manuscript we work with the hierarchical model posterior
distribution (8) for all models.

For SPMRF and GMRF models, the computation time needed to evaluate the log-
posterior and its gradient scales as O(n), where n is the grid size. However, the hierar-
chical SPMRF models have approximately twice as many parameters as the GMRF or
marginal SPMRF models. These hierarchical SPMRF methods are therefore slower than
their GMRF counterparts. Since the computational cost of evaluating the log-posterior
is only one factor determining the MCMC speed, we compared run times of the SPMRF
and GMRF models on simulated and real data (see Supplementary Materials (Faulkner
and Minin, 2017)). Our results show that SPMRF models are slower than GMRFs, but
not prohibitively so.

We developed an R package titled spmrf which allows for easy implementation of
our models via a wrapper to the rstan tools. The package code is publicly available at
https://github.com/jrfaulkner/spmrf.

3 Simulation Study

3.1 Simulation Protocol

We use simulations to investigate the performance of two SPMRF formulations using the
Laplace and horseshoe shrinkage priors described in Section 2.2 and compare results to

https://github.com/jrfaulkner/spmrf
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those using a normal distribution on the order-k differences. We refer to the shrinkage
prior methods as adaptive due to the local scale parameters, and the method with
normal prior as non-adaptive due to the use of a single scale parameter. We constructed
underlying trends with a variety of characteristics following approaches similar to those
of other authors (Scheipl and Kneib, 2009; Yue et al., 2012; Zhu and Dunson, 2013).
We investigated four different types of underlying trend (constant, piecewise constant,
smooth function, and function with varying smoothness). The first row of Figure 2 shows
examples of the trend functions, each illustrated with simulated normal observations
centered at the function values over a regular grid. We used three observation types for
each trend type where the observations were conditionally independent given the trend
function values θi, where i = 1, . . . , n. The observation distributions investigated were 1)
normal: yi | θi ∼ N(θi, σ

2), where σ = 1.5 or σ = 4.5; 2) Poisson: yi | θi ∼ Pois(exp(θi));
and 3) binomial: yi | θi ∼ Binom(m, (1 + exp(−θi))

−1), where m = 20 for all scenarios.

Note that we constructed the function values for the scenarios with normally dis-
tributed observations so that each function would have approximately the same mean
and variance, where the mean and variance were calculated across the function values re-
alized at the discrete time points. This allowed us to specify observation variances which
resulted in the same signal-to-noise ratio for each function, where signal-to-noise ratio is
defined as the standard deviation of function values divided by the standard deviation
of observations. The signal-to-noise ratios for our scenarios with normal observations
were 6 for σ = 1.5 and 2 for σ = 4.5. We chose the mean sizes for the Poisson scenarios
and sample sizes for the binomial scenarios so that the resulting signal-to-noise ratios
would be similar to those for the normal scenarios with σ = 4.5. These levels allowed
us to assess the ability of the models to adapt to local features when the signal is not
overwhelmed by noise. We describe the trend functions further in what follows.

Constant. This scenario uses a constant mean across all points. We use this scenario
to investigate the ability of each method to find a straight horizontal line in the presence
of noisy data. The values used for the constant mean were 20 for normal and Poisson
observations, and 0.5 for binomial observations.

Piecewise constant. This type of function has been used by Tibshirani (2014) and
others such as Scheipl and Kneib (2009) and Zhu and Dunson (2013). The horizontal
trends combined with sharp breaks offer a difficult challenge for all methods. For the
scenarios with normal or Poisson observations, the function values were 25, 10, 35, and
15 with break points at t ∈ {20, 40, 60}. For the binomial observations the function
values on the probability scale were 0.65, 0.25, 0.85, and 0.45 with the same break
points as the other observation types.

Smooth trend. We use this as an example to test the ability of the adaptive meth-
ods to handle a smoothly varying function. We generated the function f as a GP
with squared exponential covariance function. That is, f ∼ GP(μ,Σ), Σi,j =
σ2
f exp[−(tj − ti)

2/(2ρ2)], where Σi,j is the covariance between points i and j, σ2
f > 0 is

the signal variance and ρ > 0 is the length scale. We set μ = 10, σ2
f = 430, and ρ = 10

for the scenarios with normal or Poisson observations. For binomial observations, f was
generated in logit space with μ = −0.5, σ2

f = 3, and ρ = 10 and then back-transformed
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to probability space. For all scenarios the function was generated with the same random
number seed.

Varying smoothness. This function with varying smoothness was initially presented
by DiMatteo et al. (2001) and later used by others, including Yue et al. (2012). We
adapted the function to a uniform grid, t ∈ [1, n], where n = 100 in our case, resulting
in the function

g(t) = sin

(
4t

n
− 2

)
+ 2 exp

(
−30

(
4t

n
− 2

)2
)
.

For the normal and Poisson observations we made the transformation f(t) = 20+10g(t).
For binomial observations we used f(t) = 1.25g(t) on the logit scale.

We generated 100 datasets for each combination of trend and observation type. This
number of simulations was sufficient to identify meaningful differences between models
without excessive computation time. Each dataset had 100 equally-spaced sample points
over the interval [1, 100]. For each dataset we fit models representing three different
prior formulations for the order-k differences, which were 1) normal, 2) Laplace, and
3) horseshoe. We used the hierarchical prior representations for these models given
in Section 2.2. We selected the degree of k-th order differences for each model based
on knowledge of the shape of the underlying function. We fit first-order models for
the constant and piecewise constant functions, and we fit second-order models for the
smooth and varying smooth functions. For the scenarios with normal observations, we
set σ ∼ C+(0, 5). In all cases, θ1 ∼ N(μ, ω2), where μ is set to the sample mean and ω
is two times the sample standard deviation of the observed data transformed to match
the scale of θ. We also set γ ∼ C+(0, 0.01) for all models.

We used HMC to approximate the posterior distributions. For each model we ran
four independent chains with different randomly generated starting parameter values
and initial burn-in of 500 iterations. For all scenarios except for normal observations
with σ = 1.5, each chain had 2,500 posterior draws post-burn-in that were thinned to
keep every 5th draw. For scenarios with normal observations with σ = 1.5, chains with
10,000 iterations post-burn-in were necessary, with additional thinning to every 20th
draw. In all cases, these settings resulted in 2,000 posterior draws retained per model.
We found that these settings consistently resulted in good convergence properties, where
convergence and mixing were assessed with a combination of trace plots, autocorrela-
tion values, effective sample sizes, and potential scale reduction statistics (Gelman and
Rubin, 1992).

We assessed the relative performance of each model using three different summary
statistics. We compared the posterior medians of the trend parameters (θ̂i) to the true
trend values (θi) using the mean absolute deviation (MAD):

MAD =
1

n

n∑
i=1

|θ̂i − θi|. (9)

We assessed the width of the 95% Bayesian credible intervals (BCIs) using the mean
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credible interval width (MCIW):

MCIW =
1

n

n∑
i=1

θ̂97.5,i − θ̂2.5,i, (10)

where θ̂97.5,i and θ̂2.5,i are the 97.5% and 2.5% quantiles of the posterior distribution

for θi. We also computed the mean absolute sequential variation (MASV) of θ̂ as

MASV =
1

n− 1

n−1∑
i=1

|θ̂i+1 − θ̂i|. (11)

We compared the observed MASV to the true MASV (TMASV) in the underlying trend

function, which is calculated by substituting true θ’s into equation for MASV.

3.2 Simulation Results

In the interest of space, we emphasize results for the scenarios with normally distributed

observations with σ = 4.5 here. This level of observation variance was similar to that

for Poisson and binomial observations and therefore offered results similar to those sce-

narios. We follow these results with a brief summary of results for the other observation

types, and we provide further summary of other results in the Supplementary Materials

(Faulkner and Minin, 2017).

Constant. The three models performed similarly in terms of absolute value of all

the metrics (Table 1 and Figure 2), but the Laplace and normal models were slightly

better at fitting straight lines than the horseshoe. This is evidenced by the fact that

the horseshoe had larger MCIW and larger MASV than the other methods. The first

column of plots in Figure 3 provides a visual example of the extra variation exhibited

by the horseshoe.

Piecewise constant. The horseshoe model performed the best in all categories for

this scenario and the normal model performed the worst (Table 1 and Figure 2). The

Laplace model was closer to the normal model in performance. The horseshoe was

flexible enough to account for the large function breaks yet still able to limit variation

in the constant segments. Example fits for the piecewise constant function are shown in

the second column of plots in Figure 3.

Smooth trend. The different models were all close in value of the performance metrics

for the smooth trend scenario (Table 1 and Figure 2). The normal and Laplace models

had smallest MAD, but the horseshoe had MSAV closer to the true MSAV. The fact that

the values of the metrics were similar for all models suggests that not much performance

is lost in fitting a smooth trend with the adaptive methods in comparison to non-

adaptive.



240 Locally Adaptive Smoothing

Figure 2: Functions used in simulations and simulation results by model (N=normal,
L=Laplace, H=horseshoe) and function type for normally distributed data with σ = 4.5.
Top row shows true functions (dashed lines) with example simulated data. Remaining
rows show mean absolute deviation (MAD), mean credible interval width (MCIW), and
mean absolute sequential variation (MASV). Horizontal dashed line in plots on bottom
row is the true mean absolute sequential variation (TMASV). Shown for each model
are standard boxplots of simulation results (left) and mean values with 95% frequentist
confidence intervals (right).

Varying Smoothness. Again the models all performed similarly in terms of absolute

value of the metrics, but there was a clear ordering among models in relative performance

(Table 1 and Figure 2). The horseshoe model performed the best relative to the other

models on all metrics. This function forces a compromise between having large enough

local variance to capture the spike and small enough local variance to remain smooth

through the rest of the function. The horseshoe was more adaptive than the other two
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Figure 3: Example fits for models using a) normal, b) Laplace, and c) horseshoe priors
where observations are drawn from normal distributions with σ = 4.5. Plots show true
functions (dashed gray lines), posterior medians (solid dark gray lines), and associated
95% Bayesian credible intervals (BCI; gray bands) for each θ. Values between observed
locations are interpolated for plotting.

methods and therefore better able to meet the compromise. The plots in the last column

of Figure 3 provide example fits for this function.

Function Model MAD MCIW MASV TMASV
Constant Normal 0.341 1.904 0.003 0.000

Laplace 0.339 1.937 0.003 0.000
Horseshoe 0.356 2.406 0.006 0.000

Piecewise Const. Normal 2.112 10.826 1.587 0.606
Laplace 1.816 9.899 1.441 0.606
Horseshoe 0.886 5.919 0.689 0.606

Smooth Normal 1.355 7.092 1.328 1.406
Laplace 1.352 7.106 1.329 1.406
Horseshoe 1.389 7.081 1.359 1.406

Varying Smooth Normal 1.596 6.467 0.426 0.543
Laplace 1.552 6.413 0.432 0.543
Horseshoe 1.211 5.743 0.470 0.543

Table 1: Mean values of performance measures across 100 simulations for normal obser-
vations (σ = 4.5) for each model and trend function type.
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The results for the scenarios with normal observations with σ = 1.5 and Poisson
and binomial observations (see Supplementary Materials (Faulkner and Minin, 2017))
showed similar patterns to those with normal observations and σ = 4.5. For the con-
stant function, the normal prior performed the best and the horseshoe prior the worst,
although differences in terms of absolute values of the performance metrics were small.
The relative differences were more pronounced with the scenarios with normal observa-
tions with σ = 1.5. For the piecewise constant function, the horseshoe prior performed
the best for all scenarios and the normal prior the worst. All methods performed simi-
larly for the smooth function, with the normal and Laplace generally performing a little
better than the horseshoe. For the function with varying smoothness, the horseshoe
performed the best and the normal the worst for all scenarios.

4 Data Examples

Here we provide two examples of fitting SPMRF models to real data. Each example
uses a different probability distribution for the observations. The first example exhibits
a change point, which makes it amenable to adaptive smoothing methods. The second
example has a more uniformly smooth trend but also shows a period of rapid change, so
represents a test for all methods. First we address the issue of setting the hyperparameter
for the global smoothing parameter.

4.1 Parameterizing the Global Smoothing Prior

The value of the global smoothing parameter λ determines the precision of the marginal
distributions of the order-k differences, which influences the smoothness of the estimated
trend. Selection of the global smoothing parameter in penalized regression models is typ-
ically done via cross-validation in the frequentist setting (Tibshirani, 1996) or marginal
maximum likelihood in the empirical Bayes setting (Park and Casella, 2008). Our fully
Bayesian formulation eliminates the need for these additional steps, but in turn requires
selection of the hyperparameter controlling the scale of the prior on the smoothing pa-
rameter. The value of this hyperparameter will depend on the order of the model, the
grid resolution, and the variability in the latent trend parameters. Therefore, a single
hyperparameter value cannot be used in all situations. Some recent studies have focused
on methods for more careful and principled specification of priors for complex hierarchi-
cal models (Fong et al., 2010; Simpson et al., 2014; Sørbye and Rue, 2014). The method
of Sørbye and Rue (2014) was developed for intrinsic GMRF priors and we adapt their
approach to our specific models in what follows.

We wish to specify values of the hyperparameter ζ for various situations, where the
global scale parameter γ ∼ C+(0, ζ). Let Q be the precision matrix for the Markov ran-
dom field corresponding to the model of interest (see Supplementary Materials (Faulkner
and Minin, 2017) for examples), and Σ = Q−1 be the covariance matrix with diago-
nal elements Σii. The marginal standard deviation of all components of θ for a fixed
value of γ is σγ(θi) = γσref(θ), where σref(θ) is the geometric mean of the individ-
ual marginal standard deviations when γ = 1 (Sørbye and Rue, 2014). We want to
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set an upper bound U on the average marginal standard deviation of θi, such that
Pr(σγ(θi) > U) = α, where α is some small probability. Using the cumulative probabil-
ity function for a half-Cauchy distribution, we can find a value of ζ for a given value of
σref(θ) specific to a model of interest and given common values of U and α by:

ζ =
U

σref(θ) tan
(
π
2 (1− α)

) . (12)

By standardizing calculations to be relative to the average marginal standard devia-
tion, the methods of Sørbye and Rue (2014) allow us to easily calculate ζ for a model of
different order or a model with a different density of grid points. For practical purposes
we apply the same method to the normal and SPMRF models. This is not ideal in terms
of theory, however, since the horseshoe distribution has infinite variance and the corre-
sponding SPMRF will clearly not have the same marginal variance as a GMRF. This is
not necessarily problematic since GMRF approximation will result in an estimate of ζ
under the horseshoe SPMRF which is less informative than would result under similar
methods derived specifically for the horseshoe SPMRF, and could therefore be seen as
more conservative in terms of guarding against over smoothing. In contrast, the Laplace
SPMRF has finite marginal variance that is well approximated by the GMRF methods.
We apply these methods in the data examples that follow.

4.2 Coal Mining Disasters

This is an example of estimating the time-varying intensity of an inhomogeneous Poisson
process that exhibits a relatively rapid period of change. The data are on the time inter-
vals between successive coal-mining disasters, and were originally presented by Maguire
et al. (1952), with later corrections given by Jarrett (1979) and Raftery and Akman
(1986). We use the data format presented by Raftery and Akman (1986). A disaster is
defined as an accident involving 10 or more deaths. The first disaster was recorded in
March of 1851 and the last in March of 1962, with 191 total event times during the pe-
riod 1 January, 1851 through 31 December, 1962. Visual inspection of the data suggests
a decrease in rate of disasters over time, but it is unclear by eye alone whether this
change is abrupt or gradual. The decrease in disasters is associated with a few changes
in the coal industry at the time. A sharp decline in labor productivity at the end of the
1880’s is thought to have decreased the opportunity for disasters, and the formation of
the Miner’s Federation, a labor union, in late 1889 brought added safety and protection
to the workers (Raftery and Akman, 1986).

This data set has been of interest to various authors due to uncertainty in the
timing and rate of decline in disasters and the computational challenge presented by
the discrete nature of the observations. Some authors have fit smooth curves exhibiting
gradual change (Adams et al., 2009; Teh and Rao, 2011) and others have fit change-
point models with abrupt, instantaneous change (Raftery and Akman, 1986; Carlin
et al., 1992; Green, 1995). An ideal model would provide the flexibility to automatically
adapt to either scenario.
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Figure 4: Top row: fits to coal mining disaster data for different prior distributions.
Posterior medians (lines), 95% credible intervals (shaded regions), and data points are
shown. Bottom row: associated posterior distributions for change points.

We assumed an inhomogeneous Poisson process for the disaster events and binned
the event counts by year. We fit first-order models using the normal, Laplace, and
horseshoe prior formulations. We assumed the event counts, yi, were distributed Poisson
conditional on the θi: yi | θi ∼ Pois(exp(θi)). The marginal prior distributions for the
first-order increments were Δθj ∼ N(0, γ2) for the Normal, Δθj ∼ Laplace(γ) for the
Laplace, and Δθj ∼ HS(γ) for the horseshoe. We used the same prior specifications
as those used in the simulations for the remaining parameters, except we used the
guidelines in Section 4.1 to set the hyperparameter on the global scale prior. Using
calculations outlined in the Supplementary Materials (Faulkner and Minin, 2017), we
set σref(θ) = 6.47 and U = 0.860. Setting α = 0.05 and substituting into (12) results
in ζ = 0.0105, so γ ∼ C+(0, 0.0105) for each model. We used HMC for approximating
the posterior distributions. For each model we ran four independent chains, each with
a burn-in of 500 followed by 6,250 iterations thinned at every 5. This resulted in a
total of 5,000 posterior samples for each model. We were interested in finding the best
representation of the process over time as well as finding the most likely set of years
associated with the apparent change point. For this exercise we arbitrarily defined a
change point as the maximum drop in rate between two consecutive time points.

Plots of the fitted trends (Figure 4) indicate that the horseshoe model picked up a
sharper change in trend and had narrower BCIs than the other models. The normal and
Laplace models did not have sufficient flexibility to allow large jumps and produced a
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gradual decline in accidents rate, which is less plausible than a sharp decline in light
of the additional information about change in coal mining industry safety regulations.
The relative qualitative performance of the normal, Laplace, and horseshoe densities
is similar to that for the piecewise constant scenario from our simulation study. The
posterior distributions of the change point times are shown in Figure 4. The horseshoe
model clearly shows a more concentrated posterior for the break points, and that dis-
tribution is centered near the late 1880’s, which corresponds to the period of change in
the coal industry. Therefore, we think the Bayesian trend filter with the horseshoe prior
is a better default model in cases where sharp change points are expected.

It is important to point out that we tried other values for the scale parameter (ζ)
in the prior distribution for γ and found that the models were somewhat sensitive to
that hyperparameter for this data set. In particular, the horseshoe results for ζ = 1
looked more like those for the other two models in Figure 4, but when ζ = 0.0001, the
horseshoe produced more defined break points and straighter lines with narrower BCIs
compared to the results with ζ = 0.01 (see Supplementary Materials (Faulkner and
Minin, 2017)).

4.3 Tokyo Rainfall

This problem concerns the estimation of the time-varying mean of an inhomogeneous
binomial process. We are interested in estimating the seasonal trend in daily probability
of rainfall. The data are binary indicators of when daily rainfall exceeded 1 mm in
Tokyo, Japan, over the course of 39 consecutive years (1951–1989). The indicators were
combined by day of year across years, resulting in a sample size of m = 39 for each
of 365 out of 366 possible days, and a size of m = 10 for the additional day that
occurred in each of the 10 leap years. The observation variable y is therefore a count,
where y ∈ {0, 1, . . . , 39}. Data were obtained from the NOAA’s National Center for
Climate Information (https://www.ncdc.noaa.gov). A smaller subset of these data
(1983–1984) was initially analyzed by Kitagawa (1987) and later by several others,
including Rue and Held (2005).

We fit SPMRF models with Laplace and horseshoe priors and a GMRF model (nor-
mal prior). All models were based on second-order differences. The observation model
was

yi | θi ∼ Bin

(
mi,

1

1 + exp(−θi)

)
,

and the marginal prior distributions for the second-order differences were Δ2θj ∼
N(0, γ2) for the normal prior, Δ2θj ∼ Laplace(γ) for the Laplace, and Δ2θj ∼ HS(γ) for
the horseshoe. We used the same prior specifications as those used in the simulations for
the remaining parameters, except we used the guidelines in Section 4.1 to set the hyper-
parameter on the global scale prior. Using calculations outlined in the Supplementary
Materials (Faulkner and Minin, 2017), we set σref(θ) = 906.7 and U = 0.679. Setting
α = 0.05 and substituting into (12) results in ζ = 5.89×10−5, so γ ∼ C+(0, 5.89×10−5)
for each model. We ran four independent chains for each model, each with a burn-in of
500 followed by 6,250 draws thinned at every 5. This resulted in a total of 5,000 MCMC
samples retained for each model.

https://www.ncdc.noaa.gov
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Figure 5: Fits to Tokyo rainfall data for different prior distributions. Posterior medians
(lines), 95% credible intervals (shaded regions), and empirical probabilities (yi/ni) are
shown.

The resulting function estimates for all models reveal a sharp increase in probability
of rain in June followed by a sharp decrease through July and early August and a
subsequent sharp increase in late August and September (Figure 5). Changes through
the rest of the months were relatively smooth. The estimated function displays some
variations in smoothness similar to the function with varying smoothness used in our
simulations. All methods resulted in a similar estimated function, but the horseshoe
prior resulted in a smoother function that displayed sharper features at transition points
in late June and early August, yet also had narrower credible intervals over most of the
function. The normal and Laplace models resulted in a little more variability in the
trend in January–April and in November. In their analysis of a subset of these data,
Rue and Held (2005) used a circular constraint to tie together the endpoints of the
function at the beginning and end of the year. We did not use such a constraint here,
although it is possible with the SPMRF models. Even so, it is evident that the horseshoe
model resulted in more similar function estimates at the endpoints than did the other
two models.

5 Discussion

We presented a method for curve fitting in a Bayesian context that achieves locally
adaptive smoothing by exploiting the sparsity-inducing properties of shrinkage priors
and the smoothing properties of GMRFs. We compared the performance of the Laplace
prior, which simply reformulates the frequentist trend filter to a Bayesian analog, to
a more aggressive horseshoe shrinkage prior by using simulations and found that the
horseshoe provided the best balance between bias and precision. The horseshoe prior has
the greatest concentration of density near zero and the heaviest tails among the priors
we investigated. This combination allows smooth functions to be fit in regions with weak
signals or noisy data while still allowing for recovery of sharp functional changes when
supported by informative data. The Laplace prior allowed more functional changes of
moderate value to be retained and could not accommodate large changes without com-
promising the ability to shrink the noisy and smaller functional changes. This resulted



J. R. Faulkner and V. N. Minin 247

in greater variability in the estimated functions and wider associated credible intervals

for the models with the Laplace prior in comparison to those with the horseshoe prior

when the underlying true functions had jumps or varying smoothness. The Laplace prior

did have adaptive ability not possessed by the normal prior, but the horseshoe prior

clearly had the best adaptive properties among the priors we investigated.

The Laplace prior performed better than the horseshoe for the constant and smooth

functions in our simulations, with results closer to those of the normal prior, although

the differences in performance among the three methods were relatively small. These

functions do not have large deviations in order-k differences, and so there are many

small or medium sized values for the estimated Δkθ. This situation is reflective of

cases described by Tibshirani (1996) where the lasso and ridge regression perform best,

which helps explain why the analogous SPMRF models with Laplace or normal prior

distributions do better here. We expect that non-adaptive or mildly adaptive methods

will perform better when used on functions which do not exhibit jumps or varying

smoothness. However, it is reassuring that an adaptive method does nearly as well

as a non-adaptive method for these functions. This allows an adaptive model such as

that using the horseshoe to be applied to a variety of functions with minimal risk of

performance loss.

Our fully Bayesian implementation of the SPMRF models eliminates the need to

explicitly select the global smoothing parameter λ, either directly or through selection

methods such as cross-validation (e.g., Tibshirani (1996)) or marginal maximum likeli-

hood (e.g., Park and Casella (2008)). However, the fully Bayesian approach does still

require attention to the selection of the hyperparameter that controls the prior distribu-

tion on the smoothing parameter. We found the methods of Sørbye and Rue (2014) to

offer practical guidelines for selecting this hyperparameter, and we successfully applied

a modification of those methods in our data examples. A highly informative prior on

the global smoothing parameter can result in over-smoothing if the prior overwhelms

the information in the data, while a diffuse prior may result in a rougher function with

insufficient smoothing. Noisier data are therefore more sensitive to choice of parameteri-

zation of the prior on the global smoothing parameter. We tested prior sensitivity in the

coal mining example and found that the horseshoe prior was more responsive to changes

in hyperparmeter values than the normal and Laplace priors (see Supplementary Mate-

rials (Faulkner and Minin, 2017)). However, the results for the simulations and for the

Tokyo rainfall example were much more robust to the value of the hyperparameter on

the global scale due to the information in the data. As a precaution, we recommend first

applying methods such as those by Sørbye and Rue (2014) to set the hyperparameter,

but then also paying attention to prior sensitivity when analyzing noisy data with the

SPMRF models.

We only addressed one-dimensional problems here, but we think the GMRF repre-

sentation of these models can allow extension to higher dimensions such as the spatial

setting by incorporating methods used by Rue and Held (2005) and others. We also plan

to extend these methods to semi-parametric models that allow additional covariates.
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Supplementary Material

Supplementary Materials for “Locally Adaptive Smoothing with Markov Random Fields
and Shrinkage Priors” (DOI: 10.1214/17-BA1050SUPP; .pdf).
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